Variable Selection for Nonparametric Quantile Regression via Smoothing Spline AN OVA.
نویسندگان
چکیده
Quantile regression provides a more thorough view of the effect of covariates on a response. Nonparametric quantile regression has become a viable alternative to avoid restrictive parametric assumption. The problem of variable selection for quantile regression is challenging, since important variables can influence various quantiles in different ways. We tackle the problem via regularization in the context of smoothing spline ANOVA models. The proposed sparse nonparametric quantile regression (SNQR) can identify important variables and provide flexible estimates for quantiles. Our numerical study suggests the promising performance of the new procedure in variable selection and function estimation. Supplementary materials for this article are available online.
منابع مشابه
Variable data driven bandwidth choice in nonparametric quantile regression
The choice of a smoothing parameter or bandwidth is crucial when applying nonparametric regression estimators. In nonparametric mean regression various methods for bandwidth selection exists. But in nonparametric quantile regression bandwidth choice is still an unsolved problem. In this paper a selection procedure for local varying bandwidths based on the asymptotic mean squared error (MSE) of ...
متن کاملVariable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes
With many predictors, choosing an appropriate subset of the covariates is a crucial, and difficult, step in nonparametric regression. We propose a Bayesian nonparametric regression model for curve-fitting and variable selection. We use the smoothing spline ANOVA framework to decompose the regression function into interpretable main effect and interaction functions. Stochastic search variable se...
متن کاملNonparametric M-quantile Regression via Penalized Splines
Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...
متن کاملSmoothing Spline ANOVA Models II. Variable Selection and Model Building via Likelihood Basis Pursuit
We describe Likelihood Basis Pursuit, a nonparametric method for variable selection and model building, based on merging ideas from Lasso and Basis Pursuit works and from smoothing spline ANOVA models. An application to nonparametric variable selection for risk factor modeling in the Wisconsin Epidemiological Study of Diabetic Retinopathy is described. Although there are many approaches to vari...
متن کاملNonparametric multivariate conditional distribution and quantile regression
In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stat
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2013